
GAMT: A Fast and Scalable IP Lookup Engine for
GPU-based Software Routers

Yanbiao Li∗, Dafang Zhang∗, Alex X. Liu† and Jintao Zheng∗
∗College of Information Science and Engineering, Hunan University, Changsha, China

{lybmath_cs, dfzhang, zhengjintao}@hnu.edu.cn
†Department of CSE, Michigan State University, East Lansing, USA

alexliu@cse.msu.edu

ABSTRACT

Recently, the Graphics Processing Unit (GPU) has been
proved to be an exciting new platform for software routers,
providing high throughput and flexibility. However, it is still
a challenging task to deploy some core routing functions into
GPU-based software routers with anticipatory performance
and scalability, such as IP address lookup. Existing solu-
tions have good performance, but their scalability to IPv6
and frequent updates are not so encouraging.

In this paper, we investigate GPU’s characteristics in par-
allelism and memory accessing, and then encode a multi-
bit trie into a state-jump table. On this basis, a fast and
scalable IP lookup engine called GPU-Accelerated Multi-bit
Trie (GAMT) has been presented. According to our experi-
ments on real-world routing data, based on the multi-stream
pipeline, GAMT enables lookup speeds as high as 1072 and
658 Million Lookups Per Second (MLPS) for IPv4/6 respec-
tively, when performing a 16M traffic under highly frequent
updates (70, 000 updates/s). Even using a small batch size,
GAMT can still achieve 339 and 240 MLPS respectively,
while keeping the average lookup latency below 100 µs.
These results show clearly that GAMT makes significant
progress on both scalability and performance.

1. INTRODUCTION
Due to the ever-increasing link rate, modern routers must

process packets with a high throughput. Besides, new pro-
tocols and applications have been widely used in network
nowadays, such as IPv6, network virtualization, streaming
media and so on. Thus, modern routers are also required
to be re-configurable and easily programmable, which pre-
vents hardware-based solutions being not so adaptable due
to the flexibility. Furthermore, with the research progress in
future networks, some emerging architectures [1, 3] come to
the fore. To provide smooth transitions to these new archi-
tectures in near future, defining and controlling the network
on basis of software are very important.

1.1 Summarize of Prior Arts
General software routers have suffered from serious chal-

lenge in performance. The throughput bottlenecks of these
routers are always caused by some core routing functions,
such as IP address lookup, which needs to compare the in-
put address against all prefixes stored in the Forwarding
Information Base (FIB) to make a Longest Prefix Matching
(LPM).

Major software-based solutions to LPM fall into two cate-
gories. Generally, hash-based solutions [6, 9] provide relative

high throughput. However, the prohibitive requirements for
high-bandwidth memory, false positive rates and problems
resulted by hash conflicts have impeded their applications
in practice. The other type of solutions improves flexibil-
ity by employing some tree-like data structures [18], such as
a trie. Although optimized by many techniques [21, 7, 22],
they are still difficult to reach the speed level provided by the
Ternary Content Addressable Memory (TCAM)-based table
lookup [23] or Static Radom Access Memory (SRAM)-based
pipeline architectures [10, 11].

Fortunately, the GPU is becoming an emerging platform
for high performance general-purpose computing [5]. Some
GPU-based software routers have been proposed to achieve
very high throughput. To work on such routers, the IP
lookup engine still faces enormous challenges in terms of high
performance, scalability to large tables, new protocols and
also new applications. Most previous studies have focused on
either entire framework of software routers [8, 28] or com-
prehensive performance of multiple routing functions [14].
They all treat the routing table as static and fail in deal-
ing with update overhead. However, the peak of real-world
update frequency has exceeded 20, 000 updates/s 1 and is
still increasing. Such frequent updates lead to competition
of computing resources with lookup process. As a result, the
lookup throughput may be affected. Particularly, in some
new applications, such as the virtual router platform [12] and
the OpenFlow switch [13], the update is more frequent. Ac-
cordingly, update overhead must be considered in the lookup
engine design. In view of this, J. Zhao et al. [27] presented
a GPU-Accelerated Lookup Engine (GALE), providing fast
lookup and efficient update. However, the proposed engine is
only applicable for IPv4, and its throughput declines sharply
with the increase of update frequency.

1.2 Our Approach
In this paper, we aim to design a high performance and

more scalable IP lookup engine for GPU-based software routers.
Specifically, three goals will be reached: 1) Scale to IPv6
smoothly. 2) Keep stable lookup throughput under highly
frequent updates. 3) Improve lookup performance with la-
tency controlled.

In order to address the above issues, we present a fast and
scalable IP lookup engine, GPU-Accelerated Multi-bit Trie
(GAMT). Our basic idea is as follows: Given an FIB, we
first build a multi-bit trie, and then encode it into a state-

1This is based on our experimental data collected from the
RIPE RIS Project [2].

1978-1-4799-1640-5/13/$31.00 ©2013 IEEE

jump table, which can be easily deployed onto GPU’s global
memory as a 2-D array to provide fast IPv4/6 lookup.

Meanwhile, a multi-bit trie is maintained in main memory
of the CPU for off-line updates. Then, we introduce an
efficient mechanism for completely parallel on-line updates.
The mechanism reduces the disruption of the update to the
lookup, and makes GAMT keep stable throughput under
frequent updates.

Furthermore, the performance of GAMT is enhanced by
employing a multi-stream pipeline for efficient batch pro-
cessing. Meanwhile, to achieve a reasonable latency, a small
batch size is required. Even in this case, GAMT also works
well.

1.3 Key Contributions
This paper makes three key contributions. Firstly, we

propose novel approaches to encode a multi-bit trie into a
GPU-based state-jump table, and to optimize its structure
on the basis of GPU’s characteristics. According to the ex-
periments, our proposed scheme, GAMT, is proved faster
than GALE in practice. Besides, being further accelerated
by the multi-stream technique, GAMT can also achieve a
desirable throughput even with a small batch size.

Secondly, an efficient update mechanism for GAMT is in-
troduced. It reduces update’s disruption to lookup and pro-
motes the update parallelism on the GPU. Then, the sys-
tem architecture is designed as an efficient IP lookup engine,
which can be deployed into GPU-based software routers as
an additional plug-in.

At last, the performance of GAMT is evaluated by using
real-world FIBs and corresponding update traces. Mean-
while, we have compared our proposed scheme with GALE
and the multi-bit trie implemented on the many-core CPU.
We investigate the influence on throughput exerted by sev-
eral metrics, involving the batch size, the level of multi-bit
trie, update frequency and also GPU’s kernel configuration.
Finally, the superiorities of GAMT are demonstrated in a
comprehensive view.

The rest of this paper is organized as follows. Section 2 in-
troduces some background knowledges and reviews related
works. Section 3 presents the detail of GAMT. Section 4
proposes some optimization techniques. Section 5 describes
the evaluation methodology and experimental results. Fi-
nally, Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 Multi-bit Trie
As shown in Fig. 1(b), the LPM on the multi-bit trie is

performed by traversing from the root to some leaf step by
step. One or more bits of the input address may be processed
in each step according to the stride array2. In order to
implement a simple pipeline, each level of the multi-bit trie
is mapped onto a stage of an SRAM-based pipeline.

A. Basu et al. [4] construct a balanced multi-bit trie and
then deploy it onto the Filed-Programable Gate Array (FPGA)
platform for pipeline implementation. Based on characteris-
tics of such platform, an efficient update mechanism, named
Write Bubble, is also proposed to support fast incremental
updates. The mechanism packages all route updates into

2A stride is the number of bits should be processed in a step.
The stride array is composed of all strides for all steps.

P
1

P
2

P
7

0 *

1 *

1 1 0 1 1 *

Idx Prefix NextHop

N
1

N
2

P
3

1 0 * N
3

P
6

1 0 0 1 0 * N
2

P
4

P
5

1 0 0 0 *

1 0 0 0 1 *

N
4

N
3

N
2

(a) FIB

P
2

P
2

P
3
P
3

P
2

P
2

0 1 2 3 4 5 6 7

P
4
P
5

0 1

P
6
P
3

2 3

P
7

4 5

inf / ptr

0 1

P
1

level 1

level 2

level 3

1

000

(b) Multi-bit Trie

Figure 1: Perform LPM on the multi-bit trie, which
has 3 levels and its corresponding stride array is
{1, 3, 1}.

SM 0 SM 1 SM 2 SM 3

A GPU with 4 SMs

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block
(3, 1)

Block
(3, 0)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(0, 3)

Thread
(1, 3)

Thread
(2, 3)

Block (3, 0)

A Kernel with a 4 × 2 Grid

T
im

e
 l

in
e

Figure 2: A kernel configured with 8 threads blocks
is executed on a GPU with 4 SMs.

a group of bubbles. Each bubble contains a sequence of
(stage, location, value) triples, with at most one triple for
one stage of the pipeline. After off-chip updates, all pro-
duced bubbles are sent to the pipeline one by one. Since
different SRAMs can be accessed independently, all triples
in a bubble can be processed in parallel.

As the GPU has very different characteristics from the
FPGA, in this paper, we structure the multi-bit trie in a dif-
ferent shape, and propose a different update mechanism to
utilize GPU’s vast computing powers. But some of their ba-
sic ideas are also useful for us. Such as representing memory
modifications by triples, and reducing update’s disruption to
the lookup through off-line updates.

2.2 CUDA Programming Model
Compute Unified Device Architecture (CUDA), as the ba-

sic platform for our approach, is a scalable parallel comput-
ing platform and programming model for NVIDIAGPUs [16].

As shown in Fig. 2, GPU’s hundreds of cores are orga-
nized as an array of Streaming Multiprocessors (SMs). Each
SM which consists of several Streaming Processors (SPs)
works in Single Instruction with Multiple Threads (SIMT).
In CUDA, the function called by the CPU but executed on
the GPU is called kernel, which will be executed in one or
more SMs, and is always configured with a grid of threads
blocks.

2.2.1 Coalescence of Global Memory Accesses

Global Memory, as GPU’s device memory, is used to ex-
change data between the GPU and the CPU. It can be ac-
cessed by all executing kernels. Moreover, It is always ac-
cessed via 32-, 64-, or 128-byte memory transactions. All

2

memory accesses produced by threads of a warp3 may co-
alesce into a few memory transactions. Since accessing the
global memory results in a long latency, it is a useful strat-
egy to optimize performance on the GPU by reducing the
number of produced memory transactions.

2.2.2 Overlapping Behaviors on the GPU

Thanks to GPU’s massive parallelism, overlapping more
behaviors may exploit greater computing power. Actually,
active warps in a SM are naturally overlapped. When a
warp is waiting for memory access, other active warps can
be scheduled to perform some computing tasks. Such a warp
schedule is done by hardware, incuring zero context-switch
overhead. What we should do is to assign tasks carefully.
Besides, by using the page-locked memory on the CPU, data
transfers and kernel executions within different streams4 can
be overlapped. On some GPUs, such as the one we used,
even different kennel executions can be overlapped.

2.3 GPU-Accelerated IP Lookup Engine
Recently, some novel GPU-based software routers have

been proposed to provide very high performance. Such as
PacketShader [8], the first to demonstrate the potentials of
GPUs in the context of multi-10G software routers, and Her-
mes [28], an integrated CPU/GPU micro-architecture for
QoS-aware high speed routing. With their contributions on
the general architecture design of software routers, in this
paper, we only focus on the detail of IP lookup engine.

As a high-speed IP lookup engine, GALE [27] has pushed
the speed of IPv4 address lookup to the top level in theory
(the lookup’s time complexity is O(1)), by means of a large
direct table, which stores all possible prefixes no longer than
24. On the other hand, it also provides efficient algorithms
to map update operations to GPU’s parallel architecture.
However, in GALE, without additional operations, breaking
updates’ order may result in uncertain problems. There-
fore, table modifications produced by different updates can
not be processed in parallel, that’s why GALE ’s throughput
declines sharply with increasing update frequency.

3. GPU-ACCELERATED MULTI-BIT TRIE

3.1 Encoding Rules and Lookup Approach
Multi-bit trie [21, 19] is a good choice for fast IPv4/6

lookup with memory controlled. In order to compress data
structure and to simplify lookup logic for efficient imple-
mentation on the GPU, we transform a multi-bit trie into a
state-jump table, by encoding each unit of a trie node5 into
a 32-bit integer, according to the following rules:

1. The code of each unit takes 4 bytes, ensuring that mul-
tiple units can just fulfill a single memory transaction.
As shown in Fig. 3, the upper 3 bytes of a unit’s code
represent an inf code, while the least significant byte
represents a jump code.

2. For a unit that stores a next hop, we set its jump code
to 0, and its inf code is set as the index number of
the stored next hop information in the next hop table.

3A warp is the basic schedule unit and consists of 32 threads.
4A stream is a sequence of operations executed in order.
5A trie node with stride s has 2s units in a leaf-pushed
multi-bit trie.

256
(1, 0)

2
(0, 2)

000 0 0 0

515
(2, 3)

512
(2, 0)

512
(2, 0)

768
(3, 0)

768
(3, 0)

512
(2, 0)

1027
(4, 3)

3
(0, 3)

1280
(5, 0)

0
512
(2, 0)

1536
(6, 0)

768
(3, 0)

1792
(7, 0)

0
1024
(4, 0)

1

2

3 1

3

1

0 1 2 3 4 5 6 7 stride

256

(1, 0)

256 = 1 << 8 | 0

(inf, jump)

2

(0, 2)

1 = 0 << 8 | 2

(inf, jump)

0 1

P
1

0 1

inf = 1, jump = 0 inf = 0, jump = 2

Next Hop: P
1

Points to unit 0 of level 2

Figure 3: By encoding each trie node into several
units, we can get a state-jump table from the multi-
bit trie shown in Fig. 1(b). The process of looking
up 10001* on it is then transformed into 3 jumps.

Accordingly, our scheme supports at most 224 = 16M
different next hop information.

3. For a unit that stores a child pointer, it is encoded on
basis of the child it points to. Its jump code is set
as the index number (starts from 1) of the level this
child locates in, while its inf code is set as this child’s
offset in that level (in units). Therefore, our scheme
supports at most 28 − 1 = 255 levels, where each level
consists of 16M units at most.

Based on above rules, a multi-bit trie can be transformed
into a simple state-jump table (Fig. 3), in which a state is
just a unit. Given an IP address, the lookup is simplified
as a series of state jumps. In each step, we read several
bits of the address according to the stride corresponding to
this step, and add them as an integer to the inf code of the
current unit’s code (use the default code 1 (0, 1) in the first
step), producing a new code as a result. Then, this new
code guides us jump to another unit. This process repeats
until encountering a unit whose jump code is 0. Then, the
next hop index represented by its inf code is returned as the
result of this lookup.

For instance, to lookup address 10001∗, since the strides
array is {1, 3, 1}, we read the first bit of the address (1), and
add it to the default code’s inf code in the first step. A new
code (0 + 1, 1) is generated, which guides us jump to unit
1 of level 1, whose code is 2 (0, 2). Then, we read next 3
bits of the address (000), and add them to the inf code of
the current unit. The generated code (0 + 0, 2) guides us
jump to unit 0 of level 2, whose code is 3 (0, 3). With its inf
code (0) added by the last bit of the address (1), a new code
(0 + 1, 3) is generated and guides us jump to unit 1 of level
3. Since its code is 1280 (5, 0), the lookup is terminated
with a matched result of P5.

To implement this algorithm on GPU and to achieve higher
performance, a batch of destination addresses will be pro-
cessed by a kernel in parallel. Each address is mapped to a
thread (but a thread may receive two ore more addresses.).
Take the address locality in real network traffic into account,
the tasks are assigned in a “jump” way to make continuous
threads perform continuous requests. This algorithm is de-
scribed in pseudo-code in Algorithm 1 as a GPU kernel.

3

Algorithm 1: Lookup kernel.

/*input a batch of destination addresses.*/
Input: AddrArray, BatchSize
Output: ResArray

/*index of the first request processed in this thread.*/
idx = blockIdx.x ∗ blockDim.x+ threadIdx.x;
idx step = gridDim.x ∗ blockDim.x;
while idx < BatchSize do

addr = AddrArray[idx];/*read request*/
len = 32;/*for IPv6, it should be 64*/
jump = 1;
inf = 0;
while 0 6= jump and len > 0 do

len −= StridesArray[jump];
inf += addr >> len;
addr &= (1 << len)− 1;
code = GAMT.Array[jump×ArrayWidth+ inf];
jump = code & 0xff; inf = code >> 8;

end
ResArray[idx] = inf ;/*write result*/
idx += idx step;/*go to the next request.*/

end

1

2

3

256 2 000 0 0 0

515 512512512 512 512 10273

1280 05121536 512 1792 02048

0 1 2 3 4 5 6 7

WB Table

1 :

2 :

3 :

...

2 3 ...

3 0 ...

P2P2P2 P2 P2

P2

0 1 2 3 4 5 6 7

P8 P5

0 1

P6 P2

2 3

P7

4 5

inf / ptr

0 1

P1

Withdraw

10*

Announce

 10000*

location

P
2

P
2

P
3
P
3

P
2

P
2

0 1 2 3 4 5 6 7

P
4
P
5

0 1

P
6
P
3

2 3

P
7

4 5

inf / ptr

0 1

P
1

Figure 4: Issue grouped bubbles to the GPU.

3.2 Update Mechanism
Write Bubble is an efficient update mechanism that mini-

mizes the disruption to the lookup. But it’s designed for the
SRAM-based pipeline on FPGA, in which the parallelism is
realized by concurrent accesses to different SRAMs. In that
case, all memory modifications grouped in a bubble can be
processed in parallel.

However, a GPU has very different characteristics. Firstly,
its hundreds and thousands of cores provide massive paral-
lelism, but it works in the SIMT mode. So, to achieve higher
update performance, a batch of update requests should be
performed on the GPU by a group of threads, which calls
for more parallelism of the update. Besides, due to the coa-
lescence of global memory access on the GPU, accessing ad-
jacent memories by threads of a warp always leads to higher
performance. In view of this, a novel update mechanism is
designed for GAMT.

To reduce the disruption of update to the lookup, a backup
of the main structure should be reserved for off-chip updates.
In our case, the original multi-bit trie is still maintained on
the CPU after being encoded and deployed onto the GPU.

Algorithm 2: Prepare bubbles for on-line updates.

/* number of bubbles in a batch.*/
Input: BatchSize
Output: BubbleList

BubbleNum = BatchSize;
for s = 1 to TreeLevel do

if BubbleNum=0 then
break;

end
s num =bubblesForStage[s];
for i = s num to 1 do

bubble =WB[s][i− 1];
bubble.value=Trie[bubble.stage][bubble.location];
BubbleList[−−BubbleNum] = bubble;
if BubbleNum=0 then

break;
end

end
bubblesForStage[s] = i;

end
return BubbleList;

As shown in Fig. 4, when a route update arrives, we first
update this original trie, and collect all produced memory
modifications for later on-chip updates.

In our scheme, memory modification is also represented
by a triple < stage, location, valute >, named a bubble.
Obviously, it’s not available for batch processing that two
bubbles toward the same unit. Thus, the overlap of any
two bubbles should be eliminated to ensure completely par-
allel on-line updates. Besides, performing adjacent memory
modifications, but not those toward different stages (as in
WriteBubble), by threads of a warp will benefit more from
GPU’s global memory coalescence.

Therefore, only the locations of all units which need to be
modified are stored uniquely (possible overlap is eliminated)
in the Write Bubble Table (WB Table), and are grouped
by the level index. Then, as shown in Fig. 4, in order to
form entire bubbles, the latest values for all bubbles will be
fetched from the original multi-bit trie before these bubbles
being sent to the GPU. Algorithm 2 describes the algorithm
of preparing bubbles in pseudo-code.

3.3 Architecture Overview
As shown in Fig. 5, our system architecture is based on

CUDA, in which, all of the program codes are divided into
two cooperative parts: the Host and the Device, which are
executed respectively on CPU and GPU.

In the Host, a control thread, as the system heart, man-
ages CPU’s working threads to deal with route updates and
lookup requests, by unitizing computing resources of both
the CPU and the GPU. On the other hand, the encoded
multi-bit trie is stored on the Device (GPU) as a 2-D ar-
ray, leaving a backup on the CPU in tree shape. Besides, a
Next-Hop Table (NH Table) that contains all entire next hop
information is stored on the CPU. The purpose is to avoid
storing complicated next hop information (such as multi-
next-hop [26]) on the GPU. What’s more, in this way, any
route update that requires to modify an existing prefix will
only modify the NH Table, which reduces the disruption of
update to the lookup as well.

4

L
o

o
k

u
p

 E
n

g
in

e

A

P
I

lookup_in

lookup_out

update CUDA

Control Thread

Working Thread
Pool

Host

CPU

Multi-bit
Trie

Next-Hop
Table

WB Table

Host Memory
(16 GB)

Register
(32K words)

Shared Memory
(48 KB)

L1 Cache (16 KB)

Streaming Multiprocessor 13

Register
(32K words)

Shared Memory
(48 KB)

L1 Cache (16 KB)

Streaming Multiprocessor 1

Register
(32K words)

Shared Memory
(48 KB)

L1 Cache (16 KB)

Streaming Multiprocessor 0

L
2
 C

a
c
h

e
 (7

6
8
 K

B
)

Global Memory

(5376 MB)

Multi-bit
Trie

NVIDIA GPU

Tesla C2075

Device

 System Bus

PCIe 2.0

DMI DDR3

SP

Figure 5: System architecture of GAMT.

As mentioned above, the lookup is performed on the GPU.
Meanwhile, the route updates are executed on the CPU
firstly. The produced memory modifications are then re-
flected to the main structure on the GPU. Moreover, to
achieve higher performance, lookups and on-chip updates
are performed in parallel through batch processing.

Actually, the details of a task should be determined before
assigning to threads. It can be realized by the control thread
through obeying some user-defined configurations or receiv-
ing some specific orders from the host router with Lookup
Engine APIs. The task detail include what (lookup or on-
chip update), when and how many (the batch size). Then,
the control thread activates an idle thread to handle this
task. After that, the activated thread will prepare data and
call a kernel to finish the task on the GPU in data parallel
way.

4. PERFORMANCE OPTIMIZATION

4.1 Possibility of being Faster than GALE
In GALE, one lookup requires only one global memory

access. While in GAMT, one lookup is transformed into
several state jumps. Each step consists of a global memory
access and a few operations on integers. It seems obvious
that GALE is faster than GAMT. However, this may not
actually be the case due to the coalescence of global memory
accesses on GPU. In this section, we will show the possibility
of GAMT being faster than GALE with some analysis and
a simple example. Actually, in section 5, our experiment
results demonstrate that GAMT is truly faster than GALE
in most cases.

The operations on integers are far faster (almost multi-
hundred times [15]) than global memory access on GPU.
Therefore, only the performance of memory access will be
discussed in this section. Actually, all memory accesses by
threads of a wrap are coalesced into a few transactions by the
device. These transactions will be orderly processed. Gen-
erally, considering random accesses, a larger access range

always means a more scattered access pattern, which will
result in more transactions.

For 32 simultaneous lookups within a warp, GALE will
produce y memory transactions. While GAMT produces x
memory transactions in each step of concurrent state jumps.
Since the size of each level of the trie in GAMT is far less
than that of the direct table in GALE, x may be smaller
than y. What’s more, the sum of transactions produced in
all steps (

∑
x) may even be smaller than y in some cases.

Figure 6 shows a simple example.
In this example, the memory size of a single transaction

is supposed to be 32 bytes6 (that’s to say 8 units can be
accessed in a single transaction), and all produced memory
accesses are supposed to be distributed in a balanced way.
As shown in Fig. 6, four memory transactions are produced
for 32 concurrent lookups in GALE. While in GAMT, al-
though one lookup requires 3 jumps, 32 concurrent lookups
only produce one memory transaction in each step. Conse-
quently, GAMT only produces three transactions in total.
That is to say, performing these 32 lookups by GAMT will
cost less time than that by GALE. Although the reality is
more complicated than the case for only one warp, this ex-
ample truly shows the possibility of GAMT’s being faster
than GALE. What’s more, it also offers useful guidance for
optimizing the structure.

4.2 Optimized Multi-bit Trie
For a multi-bit trie, it is critical to calculate the stride

array after the number of trie levels is specified. With differ-
ent goals, we can calculate stride array in different manners:
minimizing the total memory consumption [21] or minimiz-
ing the maximal level to reduce update overhead with mem-
ory controlled for SRAM-based pipeline on the FPGA [4].
In our case, we have different requirements.

Given the number of levels for the target trie, the ar-
ray width (the size of the maximal level in units) should
be minimized for memory optimization and improvement
of cache hits in memory access. As shown in Fig. 6, the
performance of lookup may be affected by the size of each
tree level. Therefore, the number of memory transactions
possibly produced in each level7 should also be taken into
account. The secondary optimal objective is to minimize the
sum of possible produced memory transactions in all levels.

Supposing that four units can be accessed in a single mem-
ory transaction, let’s compare two multi-bit tries shown in
Fig. 1(b) and Fig. 7(a) respectively. As depicted, for these
two tries, the maximal levels have the same size (8 units),
but the total numbers of possible produced memory transac-
tions are different. For the one shown in Fig. 7(a), it is only
4, while for the other it is 5. In another word, the multi-bit
trie shown in Fig. 7(a) may have better lookup performance
on the GPU.

Actually, there are many choices of stride arrays to achieve
our first objective (minimize the array width). Among all
these choices, what we chose should make it easier to realize
our secondary objective. Such a algorithm is described in
Algorithm 3.

4.3 Delete in Lazy Mode

6In practice, it is 128 bytes for the GPU we used.
7Suppose the size of this tree level is x (in units), and y
units can be accessed in a single memory transaction, then,
this number can be calculated as ⌈x/y⌉

5

512512768 768 512 1027515 1280 5121536 768 17921024 0 0256 2 0 0 0 0 0 0 3

9 10 11 12 13 14 15 16 17 18 19 20 21 22 230 1 2 3 4 5 6 7 8

GAMT

1 1 111 1 1 1 1 1 111 1 1 1 4 5 336 3 3 3 2 2 222 7 2 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

GALE

Threads in a warp :

Transaction 1

Step 1 Step 2 Step 3

Transaction 2 Transaction 3 Transaction 4

Figure 6: Memory transactions produced by processing 32 lookups within a warp.

P
1

P
3

0 1

P
2

32

P
4
P
5

0 1

P
6
P
3

2 3

inf / ptr

0 1

P
1

2 3

P
2
P
7

6 7

P
2

P
2

4 5

level 1

level 2

level 3

(a) Optimized Multi-bit Trie

Global Memory

256 256 002 514 0 0

768 001027 512 0 03

1280 5125121536 768 512 17921024

0 1 2 3 4 5 6 7

2

1

2

stride

3

2

1

(b) State-jump Table

Figure 7: The multi-bit trie built according to Algorithm 3 and its corresponding state-jump table.

Algorithm 3: Minimize the array width with total pos-
sible transactions controlled.
Input: NodesInLevel
Output: StridesArray

/*H is the objective trie level*/
/*L is the level of the original uni-bit trie.*/
for s = 1 to H do

for l = 1 to L do
opt trans = opt size = INF;
for k = 1 to L− 1 do

cur size = NodesInLevel[k]× 2l−k;
cur trans = ⌈cur size/T ⌉;
max size = Max(f [s − 1][k], cur size);
if max size < opt size then

opt size = max size;
opt trans = g[s− 1][k] + cur trans;

end
else

if opt size = max size then
opt trans = min(opt trans,

g[s− 1][k] + cur trans);
end

end

end
f [s][l] = opt size; g[s][l] = opt trans;

end

end
/*calculate the stride array through a backtrack*/
StrideArray = CalStrideArray(f, g,H,L)
return StrideArray;

In order to optimize the performance of update, the pre-
fix deletions will be performed in lazy mode [20] without
any backup modifications. In this way, only the unit corre-
sponding to the deleting prefix is modified. However, it is
potentially dangerous. Some levels of the multi-bit trie on
the GPU may reach the array bound after a long term of up-
dates. It will pose a demand to rebuild the whole structure
at that time.

Consequently, some “head room” are reserved for each
level and a threshold to the array width is pre-defined. Once
it has been reached by any level, the multi-bit trie is rebuilt
off-line, and the generated structure is then sent to the GPU
as several bubbles. To minimize rebuilding’s influence on
the lookup, we store two multi-bit tries on the GPU, one
for lookup and the other for rebuilding. Interchange of their
roles may not incur any problem, as the right one is chosen
when a specified kernel is launched to process lookups. Ac-
tually, according to our experiments, GAMT’s memory cost
on the GPU is small enough to allow us store an additional
backup for it. Besides, its memory growing rates is also very
slow, which ensures the rebuilding process quite infrequent.

4.4 Multi-Stream Pipeline
For GPU-accelerated applications, batch processing is the

basic rule for performance optimization. But the cost is ex-
tra delay resulted by waiting for enough requests to fulfill
a batch. Fortunately, such a throughput-latency dilemma
can be resolved to some extent, by the multi-stream tech-
nique [25].

Three sequential steps are required to perform a batch of
lookups on basis of CUDA, which are stated as follows: 1)
Transfer requests from the Host to the Device (H2D). 2)
Kernel executions. 3) Transfer results from the Device to
the Host (D2H). However, if two or more streams are used,

6

H2D

H2D

H2D Kernel D2H

Time

S
tr
e
a
m

(a) No concurrent operations.

H2D

H2D

H2D Kernel D2H

Time

S
tr
e
a
m

H2D Kernel D2H

H2D Kernel D2H

H2D Kernel D2H

(b) Concurrent data transfer and kernel execution.

H2D

H2D

H2D Kernel D2H

Time

S
tr
e
a
m

H2D Kernel D2H

H2D Kernel D2H

H2D Kernel D2H

(c) Concurrent kernel executions.

Figure 8: Two types of concurrent operations in the multi-stream pipeline.

some behaviors within different streams can be overlapped.
It can not only improve the throughput but also reduce the
average latency (as shown in Fig. 8).

By means of page-locked memory in the host, data trans-
fer and kernel execution within different streams can be over-
lapped. To benefit from this, all lookup requests should be
divided into several groups, each of which should be sent to
independent kernels that are assigned to different streams.
Figure. 8(b)) shows an example in this way: four streams
work as a 3-stage pipeline to improve the whole performance.

Actually, two kernels in different streams can also be ex-
ecuted in parallel. As shown in Fig. 8(c), kernel executions
are overlapped, which helps us to take more advantages of
GPU’s parallel architecture. However, memory copies from
the device to the host are blocked, which makes the process-
ing time even longer than that without concurrent kernel
executions (Fig. 8(b)).

Although activating multiple streams is an efficient strat-
egy for performance optimization, it’s really device sensitive.
Both concurrent data transfer and kernel execution, and
concurrent kernel executions are only supported by some de-
vices with specified properties [16]. Furthermore, the block-
ing problem in our example can be solved by utilization a de-
vice with the computing capability higher than 3.0. There-
fore, we implement this optimization strategy into several
versions, a proper one among which is selected according to
the device specification in a self-adaption way.

5. EXPERIMENTAL EVALUATION

5.1 Evaluation Methodology
In this section, we evaluate GAMT’s lookup performance,

update overhead and the comprehensive performance, and
then demonstrate its superiorities in comparison with GALE
and a CPU-based solution, Many-core Accelerated Multi-bit
Trie (MAMT). Furthermore, we also evaluate GAMT’s per-
formance for IPv6 and on other devices to show its scalabil-
ity.

5.1.1 FIB, Update Trace and Traffic
We collected 4 public BGP routing data sets from the

RIPE RIS Project [2], each having an IPv4 FIB, an IPv6

FIB, and a whole day’s update traces. For rrc12, we also
collected a week’s update traces. Table 1 shows characteris-
tics of all data sets. To measure lookup performance, we
take the similar method as [27] to generate traffics from
FIBs. Moreover, we also generate traffics in a completely
random way.

5.1.2 Evaluation Platform

We implement MAMT on basis of OpenMP 2.0, while
GALE and GAMT are implemented based on CUDA 5.0.
Most of the experiments are running on a Dell T620 server,
and two extra experiments are conducted respectively on a
desktop PC and a notebook. In this way, the comprehen-
sive performance on different platforms can be evaluated.
Table 2 shows some specifications of these platforms.

5.1.3 Major Metrics to Measure

To evaluate lookup performance, five factors are chosen
for different experimental configurations. In each case, we
measure the lookup performance with Million Packets Per
Second (MLPS). These metrics are listed as follows. 1) batch
size, it denotes the number of requests in a batch and ranges
from 20 to 225. 2) routing data, we have 4 data sets and in
total 8 FIBs for IPv4/6. 3) traffic type, we have two types of
traffics, the traffic generated completely randomly is called
Radom in short, while the traffic generated from a FIB is
called Table. 4) tree level, it denotes the height of the multi-
bit trie and ranges from 4 to 20 for IPv4 and ranges from 8 to
30 for IPv6. 5) CUDA configuration, it involves the number
of streams (1 ∼ 24), the number of threads blocks (16 ∼ 64)
for one kernel and the number of threads (128 ∼ 1024) in
each block.

For update overhead, the update mechanism of GAMT is
evaluated in lazy mode. The mechanisms whether separate
the next hop table are called GAMT S and GAMT T respec-
tively. Two metrics are measured: 1) off-line update speed,
the speed of performing off-line updates on the CPU. 2) on-
line memory accesses, the number of memory loads/writes
produced when performing on-line updates on the GPU.

7

Table 1: Routing data
Data Route Tablea Update Traceb

name location type prefix length stamp total max avg

rrc11 New York (NY), USA
v4 442176 32 56207 1177425 6031 20.95
v6 11656 64 37080 207287 439 5.59

rrc12 Frankfurt, Germany
v4 450752 32 63524 4049260 19854 63.74
v6 11841 64 54727 1260126 3520 23.03

rrc13 Moscow, Russia
v4 456580 32 61128 2025239 15104 33.13
v6 11635 64 107244 23102 774 4.64

rrc14 Palo Alto, USA
v4 446160 32 78175 1388217 5210 17.76
v6 11719 64 55858 247228 334 4.43

acollected on Jan.1, 2013. prefix denotes the total number of prefixes and length represents the maximum length of all
prefixes.
bcollected on Jan.1 2013 from 0:00 a.m. to 23:55 p.m. stamp denotes the total number of time stamps. total denotes the
number of updates in this day. max denotes the maximum number of updates in one stamp. avg denotes the average number
of updates per stamp.

Table 2: Experiment Platform Specification
Item Specification Cost a

Server
CPU 1 Intel Xeon E5-2630 (2.30GHz, 6Cores) $640.00
RAM 2 RDIMM 8GB (1333 MHz) $138.00
GPU 1 NVIDIA Tesla C2075 (1.15GHz, 5376MB, 14×32 Cores, Capability 2.0) $1999.00

PC
CPU 1 AMD Athlon(TM)II X2 240 (2.80GHz, 2Cores) $49.00
RAM 1 DDR3 4GB (1333 MHz) $36.00
GPU 1 NVIDIA GeForce GTS 450 (1.57GHz, 512MB, 4×48 Cores, Capability 2.1) $95.00

NoteBook
CPU 1 Intel Core(TM) i7-2630QM (2.00GHz, 4Cores) unavailable
RAM 2 DDR3 4GB (1333 MHz) $72.00
GPU 1 NVIDIA GeForce GT 550M (1.48GHz, 512MB, 2×48 Cores, Capability 2.1) unavailable

aall prices are from http : //www.newegg.com. and the prices of CPU and GPU for notebook are unavailable.

20 24 28 212 216 220 224
0

200

400

600

800

1000

1200

Lo
ok

up
 S

pe
ed

 (M
LP
S)

batch size

 MAMT_v4
 MAMT_v6
 GALE_v4
 GAMT_v4
 GAMT_v6

Figure 9: Lookup speed VS. batch size

At last, the comprehensive performance is evaluated, which
includes lookup throughputs with controllable latencies, lookup
throughputs under increasing update frequencies, memory
efficiency on the GPU, performance for IPv6 FIBs and on
other two GPUs.

5.2 Lookup Performance

5.2.1 Batch Size

Firstly, a 6-level (for IPv6 FIBs, we chose level 20) multi-
bit trie and GALE’s direct table are constructed on rrc12.
Then, with the batch size increasing from 20 to 225, we
measure lookup performance by randomly generated traffics

with different CUDA configurations, and report the highest
speed for each configuration.

Figure 9 shows clearly that lookup speeds of GPU-based
solutions will be seriously affected by the batch size. For
IPv4 FIBs, if the batch size is below 8K, both GAMT
and GALE are slower than MAMT, whose speed is almost
50 MLPS accelerated by 6 cores and 12 threads. However,
GAMT enables higher speed than GALE in most cases. Af-
ter the batch size beyond 256K, GALE’s lookup speed rises
slower and slower, and then waves around 580 MLPS. By
contrast, GAMT’s lookup speed also increases sharply until
beyond 1100 MLPS, which achieves speedups by 1.9 and 20
to GALE and MAMT respectively.

For IPv6 FIBs, GALE doesn’t work. While GAMT can
also achieve a lookup speed as high as 680 MLPS with a
big batch size (16M). On the other hand, IPv6 address
lookup is always slower than IPv4 address lookup in the
same condition. That’s because an IPv6 address takes 8
bytes8, as twice as for an IPv4 address. So, it costs more
time to copy IPv6 requests to GPU. What’s more, a multi-
bit trie built on an IPv6 FIB always requires more levels to
control the memory consumption.

From the above results, a big batch size is required to
make full use of the powerful computing capability of GPU.
So, we chose 16M as the batch size to evaluate the lookup
performance of GALE and GAMT.

8An IPv6 address takes 16 bytes, but only 8 bytes are used
in forwarding. [24]

8

5.2.2 Routing Data and Traffic Type

As shown in Fig. 10, unlike the CPU-based solution, GAMT
and GALE are all obviously sensitive to the type of traffic.
Actually, they achieve higher speeds if Table is used for test.
It is because the address locality is more obvious, which pro-
duces more adjacent global memory accesses on the GPU.
As a result, less memory transactions will be produced. On
the other hand, GAMT always has better performance than
GALE in the same condition, achieving speedups at most
2.0 and 1.2 for Random and Table respectively. Besides,
from Table to Random, GAMT’s performance is more sta-
ble. In fact, the lost of speed is only 11% ∼ 14%, which is
almost 50% for GALE.

5.2.3 Tree Level

In this section, some experiments are conducted to eval-
uate the effects of the structure to the lookup performance.
We construct the Multi-bit Trie (MT) on rrc12’s IPv4 FIB
with different tree levels, and implement them on the CPU
(MAMT) and GPU (GAMT) respectively. The lookup speed
and the memory cost per prefix are measured in each case.
Certainly, GALE’s speed and memory efficiency are all con-
stants in these cases.

Figure 11 shows an interesting scenario: for the CPU-
based implementation, more tree levels result in lower lookup
speed, while GAMT’s highest speed is achieved by the 6-
level multi-bit trie. Generally, it requires more memory ac-
cesses to finish one lookup on a tree with more levels. How-
ever, on the GPU, due to the characteristic of memory coa-
lescence, the size of each tree level (in bytes) will also affect
the performance in each step of parallel lookups. Therefore,
for GAMT, less tree levels and smaller array width will re-
sult in higher lookup speed. As a result, the memory cost
per prefix9 will have an approximate opposite curve as the
lookup speed, which is also demonstrated in Fig. 11.

5.2.4 CUDA Configuration

Figure 12 shows the lookup speeds of GAMT with differ-
ent CUDA configurations. If only one stream is used, 88% of
the measured speeds fall into an interval of 300 ∼ 400MLPS.
But, if accelerated by two streams, 55% of speeds are be-
tween 400 MLPS and 500 MLPS, and other 34% fall into
the next higher interval. What’s more, the highest speed
(522 MLPS) is 1.5 times as using only one stream.

On the other hand, no matter how many streams are used,
a light weight configuration (say block < 32 and thread <
256) makes the speeds lower than half of the maximum
speed. In this case, either adding blocks or enlarging the
block size can effectively improve the performance. However,
if a kernel has been configured with enough blocks and each
block has been fulfilled with enough threads, adding blocks
or threads continuously always makes the performance fluc-
tuates. Therefore, despite activating more streams, it is also
very important to choose a proper configuration for each ker-
nel.

5.3 Update Overhead
To support update on the GPU, both GALE and GAMT

require to process updates on the CPU first. We replay a
weeks’ update traces of rrc12’s IPv4 FIB and a whole day’s

9It’s calculated as tree level × array width/total prefix.

update traces for all IPv4 FIBs, to measure their on-line
update speeds with Million Updates Per Second (MUPS).

Figure 13 shows that the performance of off-line update
for our scheme is not so good as that of GALE. It is caused
by additional time that is spent on managing the WB Ta-
ble. However, with a separated NH Table (GAMT S), the
speed of off-line update is promoted, even being higher than
GALE’s in some cases. Actually, GAMT S enables an off-
line update as high as 2.7 MUPS, which is far faster than
peak update frequencies of these 4 FIBs (see Table 1).

The global memory access is measured for on-line updates.
It reflects the speed of on-line updates and the power con-
sumption of GPU as well. In fact, GALE requires global
memory loads and writes to perform on-line updates. But
all bubbles produced in our mechanism represent only mem-
ory writes. As shown in Fig. 14, GAMT T produces far less
memory accesses than that of GALE with a reduction by
94.7% ∼ 96.6%. The reduction is still 90.3% ∼ 92.5% even if
GALE’s memory loads are ignored. Such a superiority is en-
hanced by processing all prefix modifications in a separated
next hop table in GAMT S, the on-line update overhead is
further reduced by 78.7% ∼ 88.2%.

5.4 Comprehensive Performance

5.4.1 Scalability to IPv6

The flexible data structure makes GAMT scale well to
IPv6. It is one of the most important features of GAMT
superior to GALE. Figure 15 demonstrates the same sce-
nario as for IPv4: as the tree level is increasing, the mem-
ory cost per prefix decreases first and then starts increas-
ing, while GAMT’s lookup speed curve varies in an opposite
way. In fact, the 20-level GAMT achieves the highest speed
(658 MLPS).

5.4.2 Scalability to Frequent Updates

Since the frequency of route update is continuously in-
creasing, it’s important for an IP lookup engine to maintain
a high lookup performance under highly frequent updates,
especially in virtual routers [12] or the OpenFlow switch [13].

Figure 16 shows that the lookup speed of GALE will de-
crease by more than 80% if the update frequency reaches
70K updates/s. By contrast, the lookup speed of GAMT
just decreases by 4% and its speed can achieve 972 MLPS
under so frequent updates. For the IPv6 FIB, the descent of
GAMT’s lookup speed is only 8%. Consequently, it is clear
that GAMT scales to frequent updates very well with the
help of our efficient update mechanism. This is GAMT’s
another characteristic superior to GALE.

5.4.3 Performance on Other Devices

Figure 17 shows the lookup speed of GALE and GAMT
for rrc12’s IPv4 FIB on other two GPUs. On the desktop
PC (the GPU is GTS450, 196 cores), the highest speeds
of GALE and GAMT are 235 MLPS and 218 MLPS respec-
tively. But on the notebook (the GPU is GT550M, 96 cores),
their highest speeds are only 107 MLPS and 111 MLPS re-
spectively. Although their performance vary a lot on dif-
ferent GPUs, the stability of GAMT under highly frequent
updates is still a significant superiority.

5.4.4 Controllable Latency

9

rrc11 rrc12 rrc13 rrc140

500

1000

1500

2000
Lo

ok
up

 S
pe

ed
 (M

LP
S) MAMT_Random GALE_Random GAMT_Random

 MAMT_Table GALE_Table GAMT_Table

Figure 10: Lookup speed VS. routing data with two types
of traffics.

4 8 12 16 20
0

400

800

1200

1600
 MAMT_speed
 GALE_speed
 GAMT_speed

M
em

or
y

C
os

t p
er

 P
re

fix
 (B

)

Lo
ok

up
 S

pe
ed

 (M
LP
S)

Tree Level
0

50

100

150

200 GALE_mem
 MT_mem

Figure 11: Lookup speed and memory effi-
ciency VS. tree level.

Lo
ok

up
 S

pe
ed

 (M
LP
S

)

ThreadBlock

200.0

300.0

400.0

500.0

600.0

(a) Using only one stream.

Lo
ok

up
 S

pe
ed

 (M
LP
S

)

ThreadBlock

200.0

300.0

400.0

500.0

600.0

(b) Accelerated by two streams.

Figure 12: Lookup speed with different CUDA configurations.

Jan.1 Jan.2 Jan.3 Jan.4 Jan.5 Jan.6 Jan.70

2

4

6

8

10

12

U
pd

at
e

Sp
ee

d(
M
U
PS

)

 GALE
 GAMT_T
 GAMT_S rrc11 rrc12 rrc13 rrc14

0
2
4
6
8

Jan.1

Figure 13: Off-line update speed.

0

1x108

2x108

3x108

4x108

Jan.2

 GALE_Read
 GALE_Write

Jan.1G
A

LE
's

 M
em

or
y

A
cc

es
es

Jan.4Jan.3 Jan.6Jan.5 Jan.7
0

1x107

2x107

3x107

4x107 GAMT_T_Write
 GAMT_S_Write

G
A

M
T'

s
M

em
or

y
A

cc
es

es
Figure 14: On-line update overhead.

8 12 16 20 24 28
0

200

400

600

800

1000 MAMT_speed
 GAMT_speed

M
em

or
y

C
os

t p
er

 P
re

fix
 (B

)

Lo
ok

up
 S

pe
ed

 (M
LP
S)

Tree Level
0

100

200

300

400

500 MAMT_mem

Figure 15: Lookup speed for IPv6.

0K 20K 40K 60K
0

400

800

1200

1600

Lo
ok

up
 S

pe
ed

 (M
LP
S)

Update Frequence (updates / s)

 GALE GAMT_v4 GAMT_v6

Figure 16: Lookup speed under fre-
quent updates.

0K 6K 12K 18K 24K
0

200

400

600

Lo
ok

up
 S

pe
ed

 (M
LP
S)

Update Frequence (updates / s)

 GALE_GTS450
 GAMT_GTS450
 GALE_GT550M
 GAMT_GT550M

40K 60K 80K 100K 120K
0

100

200

300

Figure 17: Lookup speed on other
GPUs.

As mentioned in Section 4.4, batch processing on the GPU
improves performance at the cost of extra delays, and such
a dilemma can be resolved by the multi-stream pipeline to

some extent. To keep a reasonable latency (measured as
the elapsed time between a destination address being trans-
ferred to GPU until its lookup result has returned to CPU),

10

4 8 12 16 20 24
0

200

400

600

800

1000
Lo

ok
up

 S
pe

ed
 (M

LP
S)

of stream

 GALE_speed
 GAMT_v4_speed
 GAMT_v6_speed

0

200

400

600

800

1000
 GALE_latency
 GAMT_v4_latency
 GAMT_v6_latency

A
ve

ra
ge

 L
ae

nc
y

(
s)

Figure 18: Lookup speed with controlled latency.

Jan.1 Jan.2 Jan.3 Jan.4 Jan.5 Jan.6 Jan.7
0

50

100

150

M
em

or
y

fo
r I

Pv
6

FI
B

 (K
B

)

M
em

or
y

fo
r I

Pv
4

FI
B

 (M
B

)

 GAMT_v4

Jan.1Jan.2Jan.3Jan.4Jan.5Jan.6Jan.7
19.0
19.1
19.2
19.3 GALE

0

100

200

300

 GAMT_v6 90.0
90.5
91.0
91.5
92.0

Figure 19: Memory consumptions.

say below 100 µs (as in [25]), we chose a small batch size
(256K). Up-to 24 streams are activated, and each kernel is
configured to have 64 blocks with each block having 1024
threads. Besides, lookup speeds and latencies are measured
and analyzed based on the detail timeline generated by the
NVIDIA Visual Profiler tool [17].

Figure 18 shows that GALE and GAMT (for IPv4/6) have
similar behaviors. As expected, the average latency is consis-
tently decreased with an increasing number of GPU streams.
However, each stream has its own data transfers and kernel
executions (see Fig. 8). As a result, although activating more
streams can benefit more from behavior overlaps, it also re-
sults in cumulation of some fixed costs, such as warming up
copy engines and starting kernels. Accordingly, the lookup
speed will increase first and then decrease with the increas-
ing number of streams.

In fact, to keep latency below the baseline (100 µs), GALE
requires 18 streams, enabling a lookup speed of 248 MLPS
with an average latency of 98.8 µs. In our system, for IPv4,
12 streams can achieve a speed as high as 339 MLPS, with
an average latency controlled below our baseline. For IPv6,
16 streams will achieve 240 MLPS with an average latency
of 99.5 µs.

5.4.5 Memory Consumptions

On the GPU, GALE consumes 64 MB (its direct table has
224 = 16M units, each taking 4 bytes.) global memories,
which is a constant in all cases. While GAMT’s memory
cost is determined by the shape of the multi-bit trie (shown
as Fig. 11 and Fig. 15). For rrc12’s IPv4 FIB, the 6-level
GAMT requires 22B to store each prefix in average, achiev-
ing a reduction to GALE by a factor of 70.3%.

In our system, to keep hierarchical lookup on the GPU,
we should reserve some “head room” for each stage to sup-
port later updates. Due to the lazy-mode deleting (see sec-
tion 4.3), we need rebuild GAMT after continuously up-
dates. A backup of GAMT is stored on the GPU for re-
building to avoid its disruption to the lookup. Even in this
case, as shown in Fig. 19, the total memory consumptions of
our system is still only 19.1MB, as less as 29.8% of GALE’s
memory cost on the GPU. Furthermore, after a week’s up-
dates, the increasing rate of GAMT’s memory cost (which
for the array width is the same) is below 8%, ensuring the
rebuilding process quite infrequent even with a little “head
room”.

6. CONCLUSION
In this paper, we have presented GPU-Accelerated Multi-

bit Trie (GAMT), a fast and scalable IP lookup engine for

GPU-based software routers. With a carefully designed multi-
bit trie and an efficient multi-stream pipeline, the proposed
scheme exploits GPU’s characteristics in coalescence of mem-
ory access and concurrent operations, to provide very high
performance in IPv4/6 address lookup. The speed of IPv4/6
address lookup has exceeded 1000/650 MLPS respectively,
when an NVIDIA Tesla C2075 GPU is nearly fully utilized.
Even a small batch size is used, GAMT can also achieve
339 and 240 MLPS for IPv4 and IPv6 respectively, with the
average latency controlled below 100 µs.

On the other hand, GAMT scales well to frequent updates
by employing an efficient update mechanism. In fact, it en-
ables a stable throughput, which decreases only 4% and 8%
for IPv4 and IPv6 respectively, even if update frequency has
increased to 70K updates/s. Our experiments on different
GPUs also demonstrate that GAMT works well on them in a
self-adaptive way, and also provides higher performance and
better scalability to frequent updates than that of GALE in
most cases.

7. ACKNOWLEDGMENTS
This work is supported by the National Basic Research

Program of China (973) under Grant 2012CB315805, the
National Natural Science Foundation of China under Grant
Number 61173167, 61272546, and 61370226, and the Na-
tional Science Foundation under Grant Numbers CNS-1017598,
CNS-1017588, CNS-0845513, and CNS-0916044. The corre-
sponding authors of this paper are Dafang Zhang and Alex
X. Liu.

8. REFERENCES
[1] Named data networking (NDN).

http://www.named-data.net.

[2] RIPE network coordination centre [on line]. Available:
http://www.ripe.net.

[3] Software-defined networking (SDN).
https://www.opennetworking.org.

[4] A. Basu and G. Narlikar. Fast incremental updates for
pipelined forwarding engines. IEEE/ACM
Transactions on Networking (TON), 13(3):690–703,
2005.

[5] D. Blythe. Rise of the graphics processor. Proceedings
of the IEEE, 96(5):761–778, 2008.

[6] A. Broder and M. Mitzenmacher. Using multiple hash
functions to improve ip lookups. In INFOCOM 2001.

11

Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1454–1463. IEEE, 2001.

[7] W. Eatherton, G. Varghese, and Z. Dittia. Tree
bitmap: hardware/software ip lookups with
incremental updates. ACM SIGCOMM Computer
Communication Review, 34(2):97–122, 2004.

[8] S. Han, K. Jang, K. Park, and S. Moon. Packetshader:
a gpu-accelerated software router. ACM SIGCOMM
Computer Communication Review, 40(4):195–206,
2010.

[9] Z. Huang, J. Peir, and S. Chen. Approximately-perfect
hashing: improving network throughput through
efficient off-chip routing table lookup. In INFOCOM,
2011 Proceedings IEEE, pages 311–315. IEEE, 2011.

[10] W. Jiang, Q. Wang, and V. K. Prasanna. Beyond
tcams: An sram-based parallel multi-pipeline
architecture for terabit ip lookup. In INFOCOM 2008.
The 27th Conference on Computer Communications.
IEEE, pages 1786–1794. IEEE, 2008.

[11] H. Le, W. Jiang, and V. K. Prasanna. A sram-based
architecture for trie-based ip lookup using fpga. In
Field-Programmable Custom Computing Machines,
2008. FCCM’08. 16th International Symposium on,
pages 33–42. IEEE, 2008.

[12] L. Luo, G. Xie, Y. Xie, L. Mathy, and K. Salamatian.
A hybrid ip lookup architecture with fast updates. In
INFOCOM, 2012 Proceedings IEEE, pages 2435–2443.
IEEE, 2012.

[13] R. McGeer. A safe, efficient update protocol for
openflow networks. In Proceedings of the first workshop
on Hot topics in software defined networks, HotSDN
’12, pages 61–66, New York, NY, USA, 2012. ACM.

[14] S. Mu, X. Zhang, N. Zhang, J. Lu, Y. S. Deng, and
S. Zhang. Ip routing processing with graphic
processors. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 93–98.
European Design and Automation Association, 2010.

[15] NVIDIA Corporation. NVIDIA CUDA C Best
Practices Guide, Version 5.0, Oct. 2012.

[16] NVIDIA Corporation. NVIDIA CUDA C
Programming Guide, Version 5.0, Oct. 2012.

[17] NVIDIA Corporation. NVIDIA CUDA Profiler User
Guide, Version 5.0, Oct. 2012.

[18] M. Á. Ruiz-Sánchez, E. W. Biersack, and
W. Dabbous. Survey and taxonomy of ip address
lookup algorithms. Network, IEEE, 15(2):8–23, 2001.

[19] S. Sahni and K. S. Kim. Efficient construction of
multibit tries for ip lookup. IEEE/ACM Transactions
on Networking (TON), 11(4):650–662, 2003.

[20] S. Sahni and H. Lu. Dynamic tree bitmap for ip
lookup and update. In Networking, 2007. ICN’07.
Sixth International Conference on, pages 79–79. IEEE,
2007.

[21] V. Srinivasan and G. Varghese. Fast address lookups
using controlled prefix expansion. ACM Transactions
on Computer Systems (TOCS), 17(1):1–40, 1999.

[22] Z. A. Uzmi, M. Nebel, A. Tariq, S. Jawad, R. Chen,
A. Shaikh, J. Wang, and P. Francis. Smalta: practical
and near-optimal fib aggregation. In Proceedings of the
Seventh COnference on emerging Networking
EXperiments and Technologies, page 29. ACM, 2011.

[23] G. Wang and N.-F. Tzeng. Tcam-based forwarding
engine with minimum independent prefix set (mips)
for fast updating. In Communications, 2006. ICC’06.
IEEE International Conference on, volume 1, pages
103–109. IEEE, 2006.

[24] M. Wang, S. Deering, T. Hain, and L. Dunn.
Non-random generator for IPv6 tables. In Proc. IEEE
Symposium on High Performance Interconnects, Hot
Interconnects, pages 35–40, 2004.

[25] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu,
W. Meng, H. Dai, X. Tian, Z. Xu, H. Wu, and
D. Yang. Wire speed name lookup: A gpu-based
approach. In 10th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’13),
pages 199–212, 2013.

[26] C. Wenping, Z. Xingming, Z. Jianhui, and W. Bin.
Research on multi next hop rip. In Information
Technology and Applications, 2009. IFITA’09.
International Forum on, volume 1, pages 16–19. IEEE,
2009.

[27] J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu.
Exploiting graphics processors for high-performance ip
lookup in software routers. In INFOCOM, 2011
Proceedings IEEE, pages 301–305. IEEE, 2011.

[28] Y. Zhu, Y. Deng, and Y. Chen. Hermes: an integrated
cpu/gpu microarchitecture for ip routing. In
Proceedings of the 48th Design Automation
Conference, pages 1044–1049. ACM, 2011.

12

